Электропроводность диэлектриков. Виды диэлектриков, их свойства и применение

Электропроводность диэлектриков является важной физической характеристикой. Информация о ней позволяет выявлять сферы применения материалов.

Термины

По проводимости электрического тока вещества подразделяют на группы:

  • диэлектрики;
  • полупроводники;
  • проводники.

Отлично проводят ток металлы — величина их удельной электропроводимости достигает 106-108 (Ом · м) -1 .

А диэлектрические материалы не способны проводить электрический ток, поэтому они применяются в качестве изоляторов. Они не имеют свободных носителей зарядов, отличаются дипольным строением молекул.

Полупроводниками же являются твердые материалы, имеющие промежуточные значения проводимости.

электропроводность диэлектриков

Классификация

Все диэлектрические материалы подразделяют на полярные и неполярные виды. У полярных изоляторов центры положительных и отрицательных зарядов смещены от центра. Молекулы таких веществ по своим электрическим параметрам аналогичны жесткому диполю, имеющему свой дипольный момент. В качестве полярных диэлектриков можно привести воду, аммиак, хлороводород.

Неполярные диэлектрики отличаются совпадением центров положительных и отрицательных зарядов. Они сходны по электрическим характеристикам упругому диполю. Примерами таких изоляторов являются водород, кислород, тетрахлорметан.

диэлектрические материалы

Электропроводность

Электропроводность диэлектриков объясняется присутствием в их молекулах незначительного числа свободных электронов. При смещении зарядов внутри вещества за некоторый промежуток времени, наблюдается постепенное установление равновесного положения, что и является причиной появления тока. Электропроводность диэлектриков существует в момент выключения и включения напряжения. Технические образцы изоляторов имеют максимальное количество свободных зарядов, поэтому в них появляются незначительные сквозные токи.

Электропроводность диэлектриков в случае постоянного значения напряжения вычисляется по сквозному току. Данный процесс предполагает выделение и нейтрализацию на электродах имеющихся зарядов. В случае переменного напряжения на величину активной проводимости влияет не только сквозной ток, но и активные компоненты поляризационных токов.

Электрические свойства диэлектриков зависят от плотности тока, сопротивления материала.

виды изоляции

Твердые диэлектрики

Электропроводность твердых диэлектриков подразделяют на объемную и поверхностную. Для проведения сравнения этих параметров у различных материалов применяют значения объемного удельного и поверхностного удельного сопротивления.

Полная проводимость суммируется из двух этих величин, ее величина зависит от влажности среды и температуры окружающего воздуха. В случае продолжительной работы под напряжением, наблюдается уменьшение сквозного тока, проходящего через жидкие и твердые изоляторы.

А в случае увеличения тока через некоторый промежуток времени, можно вести речь о том, что внутри вещества будут протекать необратимые процессы, ведущие к разрушению (пробой диэлектрика).

газообразные диэлектрики

Особенности газообразного состояния

Газообразные диэлектрики имеют незначительную электропроводность в том случае, если напряженность поля принимает минимальные значения. Возникновение тока в газообразных веществах возможно только в тех случаях, когда в них присутствуют свободные электроны либо заряженные ионы.

Газообразные диэлектрики являются качественными изоляторами, поэтому используются в современной электронике в больших объемах. Ионизация в таких веществах обуславливается внешними факторами.

Из-за соударений ионов газа, а также при термическом воздействии, ультрафиолетовом или рентгеновском действии, наблюдается и процесс образования нейтральных молекул (рекомбинация). Благодаря этому процессу ограничивается увеличение количества ионов в газе, устанавливается определенная концентрация заряженных частиц через короткий временной промежуток после воздействия внешнего источника ионизации.

В процессе возрастания напряжения, прикладываемого к газу, увеличивается движение ионов к электродам. Они не успевают рекомбинироваться, поэтому осуществляется их разряжение на электродах. При последующем повышении напряжения ток не возрастает, его именуют током насыщения.

Рассматривая неполярные диэлектрики, отметим, что воздух является совершенным изолятором.

неполярные диэлектрики

Жидкие диэлектрики

Электропроводность жидких диэлектриков объясняется особенностями строения молекул жидкости. В неполярных растворителях существуют диссоциированные примеси, включая и влагу. В полярных молекулах проводимость электрического тока объясняется также процессом распада на ионы самой жидкости.

В этом агрегатном состоянии ток также вызывается движением коллоидных частиц. Из-за нереальности полного выведения из такого диэлектрика примесей, возникают проблемы получения жидкостей с незначительной проводимостью тока.

Все виды изоляции предполагают поиск вариантов снижения удельной проводимости диэлектриков. Например, удаляют примеси, корректируют температурный показатель. Повышение температуры вызывает снижение вязкости, возрастание подвижности ионов, рост степени тепловой диссоциации. Данные факторы воздействуют на величину удельной проводимости диэлектрических материалов.

электропроводность твердых диэлектриков

Электропроводность твердых тел

Она объясняется перемещением не только ионов самого изолятора, но и заряженных частиц примесей, содержащихся внутри твердого материала. По мере прохождения через твердый изолятор происходит частичное удаление примесей, что постепенно сказывается на проводимости тока. Учитывая особенности строения кристаллической решетки, перемещение заряженных частиц обусловлено флуктуацией теплового движения.

При невысоких температурах происходит движение положительных и отрицательных ионов примесей. Такие виды изоляции характерны для веществ с молекулярной и атомной кристаллической структурой.

Для анизотропных кристаллов величина удельной проводимости меняется в зависимости от его осей. К примеру, в кварце в направлении, расположенном параллельно основной оси, она превышает в 1000 раз перпендикулярное положение.

В твердых пористых диэлектриках, где практически нет влаги, незначительное повышение электрического сопротивления приводит к повышению их электрического сопротивления. У веществ, которые содержат примеси, растворимые в воде, наблюдается существенное уменьшение объемного сопротивления из-за изменения влажности.

Поляризация диэлектриков

Данное явление связано с изменением положения частиц изолятора в пространстве, которое приводит к приобретению каждым макроскопическим объемом диэлектрика некоторого электрического (индуцированного) момента.

Существует поляризация, которая возникаем под воздействием внешнего поля. Также выделяют самопроизвольный вариант поляризации, появляющейся даже при отсутствии действия внешнего поля.

Относительная диэлектрическая проницаемость характеризуется:

  • емкостью конденсатора с этим диэлектриком;
  • ее величиной в вакууме.

Сопровождается этот процесс возникновением на поверхности диэлектрика связанных зарядов, которые уменьшают внутри вещества величину напряженности.

В случае полного отсутствия внешнего поля отдельный элемент объема диэлектрика не обладает электрическим моментом, поскольку сумма всех зарядов равна нулю и наблюдается совпадение отрицательных и положительных зарядов в пространстве.

электропроводность жидких диэлектриков

Варианты поляризации

При электронной поляризации происходит смещение под воздействием внешнего поля электронных оболочек атома. В ионном варианте наблюдается смещение узлов решетки. Для дипольной поляризации характерны потери на преодоление внутреннего трения и сил связи. Структурный же вариант поляризации считается самым медленным процессом, он характеризуется ориентацией неоднородных макроскопических примесей.

Заключение

Электроизоляционные материалы представляют собой вещества, которые позволяют получать надежную изоляцию некоторых составных частей электрического оборудования, находящегося под определенными электрическими потенциалами. В сравнении с проводниками тока, у многочисленных изоляторов значительно большее электрическое сопротивление. Они способны создавать сильные электрические поля и накапливать дополнительную энергию. Именно это свойство изоляторов применяют в современных конденсаторах.

В зависимости от химического состава, их подразделяют на природные и синтетические материалы. Самой многочисленной является вторая группа, поэтому именно эти изоляторы применяют в разнообразных электрических приборах.

В зависимости от технологических характеристик, структуры, состава, выделяют пленочные, керамические, восковые, минеральные изоляторы.

При достижении величины пробивного напряжения, наблюдается пробой, приводящий к резкому возрастанию величины электрического тока. Среди характерных признаков подобного явления можно выделить незначительную зависимость прочности от напряжения и температуры, толщины.

Проводники и диэлектрики

Все существующие природные вещества по степени электропроводности условно разделяют на три группы: проводники электрического тока, диэлектрические и полупроводниковые материалы.

Разделение материалов по электропроводности

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Проводник

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

Диэлектрик

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Важно! При повышении влажности диэлектрики могут лишиться непроводящих способностей.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Свойства материалов

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности. В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости.

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы.

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Свойства проводников

Основными характеристиками проводников электричества являются:

  1. сопротивление,
  2. электропроводность.

При движении электронов по проводящему веществу происходят их столкновения с ионами и атомами. Это приводит к возникновению сопротивления.

Если между двумя проводниками создать разность потенциалов, то через третий, их соединяющий, потечет электрический ток. Направление его движения будет от большего потенциала к меньшему. В этом случае носителями будут электроны, не связанные между собой, которые определяют значение электропроводимости вещества.

Электропроводность – возможность материала пропускать электрический ток. Этот показатель обратно пропорционален сопротивлению материала, измеряется в сименсах, См.

В зависимости от носителей заряда, электропроводность может быть:

  • электронной,
  • ионной,
  • дырочной.

Проводник с электронной проводимостью

Обратите внимание! Надежный проводник характеризуется малым сопротивлением потоку движущихся электронов и, соответственно, высокой электропроводностью. Наибольшая проводимость – свойство наилучшего проводника.

Выбор проводящих материалов должен осуществляться в соответствии с их свойствами:

  • Электрическими (удельное сопротивление и температурный коэффициент сопротивления);
  • Физическими (градус плавления, плотность);
  • Механическими (устойчивость к растяжению, изгибанию, возможность обработки на станках);
  • Химическими (взаимодействие с окружающей средой, возможность соединения при сварке, пайке).

Малым удельным сопротивлением обладают металлы без примесей. У сплавов этот показатель увеличивается. Сопротивление возрастает и с повышением температуры.

Важно! При охлаждении до критических значений сопротивление большинства токопроводящих веществ падает до нуля. Это свойство носит название сверхпроводимости.

При выборе проводников для электроустановок, линий питания, защитного заземления и других сфер применения важно учитывать все качества материалов.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Распределение переменного тока по сечению

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление.

Формула определения длины проводника

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Виды проводников

Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.

Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.

Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.

Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.

Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.

В электрическом поле низкой напряженности любой газ и пар не проводят ток. Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью. Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  1. Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  2. Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  3. Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  4. Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Полупроводники

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Обратите внимание! При достижении температурой нулевой отметки полупроводник ведет себя как изолятор.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

Зонная классификация

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Видео

Удельное сопротивление

Удельное сопротивление – это свойство материала, характеризующее его способность препятствовать прохождению электрического тока.

Характеристики электротехнических материалов

Главной характеристикой в электротехнике считается удельная электропроводность, измеряемая в См/м. Она служит коэффициентом пропорциональности между вектором напряжённости поля и плотностью тока. Обозначается часто греческой буквой гамма γ. Удельное сопротивление признано величиной, обратной электропроводности. В результате формула, упомянутая выше, обретает вид: плотность тока прямо пропорциональна напряжённости поля и обратно пропорциональна удельному сопротивлению среды. Единицей измерения становится Ом м.

Рассматриваемое понятие сохраняет актуальность не только для твёрдых сред. К примеру, ток проводят жидкости-электролиты и ионизированные газы. Следовательно, в каждом случае допустимо ввести понятие удельного сопротивления, ведь через среду проходит электрический заряд. Найти в справочниках значения, к примеру, для сварочной дуги сложно по простой причине – подобными задачами не занимаются в достаточной степени. Это не востребовано. С момента обнаружением Дэви накала платиновой пластины электрическим током до внедрения в обиход лампочек накала прошло столетие – по схожей причине не сразу осознали важность, значимость открытия.

Свойство материала

В зависимости от значения величины удельного сопротивления материалы делятся:

  1. У проводников – менее 1/10000 Ом м.
  2. У диэлектриков – свыше 100 млн. Ом м.
  3. Полупроводники по значениям удельного сопротивления находятся между диэлектриками и проводниками.

Эти значения характеризуют исключительно способность тела сопротивляться прохождению электрического тока и не влияют на прочие аспекты (упругость, термостойкость). К примеру, магнитные материалы бывают проводниками, диэлектриками и полупроводниками.

Как образуется в материале проводимость

В современной физике сопротивление и проводимость принято объяснять зонной теорией. Она применима для твёрдых кристаллических тел, атомы решётки которого принимаются неподвижными. Согласно указанной концепции энергия электронов и прочих типов носителей заряда определяется установленными правилами. Выделяют три основные зоны, присущие материалу:

  • Валентная зона содержит электроны, связанные с атомами. В этой области энергия электронов градируется ступенями, а число уровней ограничено. Внешняя из слоёв атома.
  • Запрещённая зона. В этой области носители заряда находиться не вправе. Служит границей раздела двух других зон. У металлов часто отсутствует.
  • Свободная зона расположена выше двух предыдущих. Здесь электроны участвуют свободно в создании электрического тока, а энергия любая. Нет уровней.

Диэлектрики характеризуются высочайшим расположением свободной зоны. При любых мыслимых на Земле естественных условиях материалы электрический ток не проводят. Велика ширина и запрещённой зоны. У металлов масса свободных электронов. А валентная зона одновременно считается областью проводимости – запрещённых состояний нет. В результате подобные материалы обладают малым удельным сопротивлением.

Расчёт уд. сопротивления

Расчёт уд. сопротивления

На границе контактов атомов образуются промежуточные энергетические уровни, возникают необычные эффекты, используемые физикой полупроводников. Неоднородности создаются намеренно внедрением примесей (акцепторов и доноров). В результате образуются новые энергетические состояния, проявляющие в процессе протекания электрического тока новые свойства, которыми не владел исходный материал.

У полупроводников ширина запрещённой зоны невелика. Под действием внешних сил электроны способны покидать валентную область. Причиной становится электрическое напряжение, нагрев, облучение, прочие типы воздействий. У диэлектриков и полупроводников по мере понижения температуры электроны переходят на пониженные уровни, в результате валентная зона заполняется, а зона проводимости остаётся свободна. Электрический ток не течёт. В соответствии с квантовой теорией класс полупроводников характеризуется как материалы с шириной запрещённой зоны менее 3 эВ.

Энергия Ферми

Важное место в теории проводимости, объяснениях явлений, происходящих в полупроводниках, занимает энергия Ферми. Скрытности добавляют туманную определения термина в литературе. В зарубежной литературе говорится, что уровень Ферми – некое значение в эВ, а энергия Ферми – разница между ним и наименьшим в кристалле. Приведём избранные общие и понятные предложения:

  1. Уровень Ферми – максимальный из всех, присущих электрону в металлах при температуре 0 К. Следовательно, энергией Ферми считается разница между этой цифрой и минимальным уровнем при абсолютном нуле.
  2. Энергетический уровень Ферми – вероятность нахождения электронов составляет 50% при всех температурах, кроме абсолютного нуля.

Энергия Ферми определятся исключительно для температуры 0 К, тогда как уровень существует при любых условиях. В термодинамике понятие характеризует полный химический потенциал всех электронов. Уровень Ферми определяют как работу, затраченную на дополнение объекта единственным электроном. Параметр определяет проводимость материала, помогает понять физику полупроводников.

Уровень Ферми не обязательно существует физически. Известны случаи, когда место пролегания находилось в середине запрещённой зоны. Физически уровень не существует, там нет электронов. Однако параметр заметен при помощи вольтметра: разница потенциалов между двумя точками цепи (показания на дисплее) пропорциональна разнице уровней Ферми этих точек и обратно пропорциональна заряду электрона. Простая зависимость. Допустимо увязать эти параметры с проводимостью и удельным сопротивлением, пользуясь законом Ома для участка цепи.

Материалы с низким удельным сопротивлением

К проводникам относят большинство металлов, графит, электролиты. Такие материалы обладают низким удельным сопротивлением. В металлах положительно заряженные ионы образуют узлы кристаллической решётки, окружённые облаком электронов. Их принято называть общими за вхождение в состав зоны проводимости.

Хотя не до конца понятно, что такое электрон, его принято описывать как частицу, движущуюся внутри кристалла с тепловой скоростью в сотни км/с. Это намного больше, чем нужно, чтобы вывести космический корабль на орбиту. Одновременно скорость дрейфа, образующая электрический ток под действием вектора напряжённости, едва достигает сантиметра в минуту. Поле распространяется в среде со скоростью света (100 тыс. км/ с).

В результате указанных соотношений становится возможным выразить удельную проводимость через физические величины (см. рисунок):

Формула для расчётов

Формула для расчётов

  • Заряд электрона, e.
  • Концентрация свободных носителей, n.
  • Масса электрона, me.
  • Тепловая скорость носителей,
  • Длина свободного пробега электрона, l.

Уровень Ферми для металлов лежит в пределах 3 – 15 эВ, а концентрация свободных носителей почти не зависит от температуры. Поэтому удельная проводимость, а значит, и сопротивление определяется строением молекулярной решётки и её близостью к идеалу, свободой от дефектов. Параметры определяют длину свободного пробега электронов, легко найти в справочниках, если требуется произвести вычисления (к примеру, с целью определения удельного сопротивления).

Лучшей проводимостью обладают металлы с кубической решёткой. Сюда относят и медь. Переходные металлы характеризуются гораздо большим удельным сопротивлением. Проводимость падает с ростом температуры и при высоких частотах переменного тока. В последнем случае наблюдается скин-эффект. Зависимость от температуры линейная выше некого предела, носящего имя нидерландского физика Петера Дебая.

Отмечаются и не столь прямолинейные зависимости. К примеру, температурная обработка стали повышает количество дефектов, что закономерно снижает удельную проводимость материала. Исключением из правила стал отжиг. Процесс снижает плотность дефектов, что за счёт чего удельное сопротивление уменьшается. Яркое влияние оказывает деформация. Для некоторых сплавов механическая обработка приводит к заметному повышению удельного сопротивления.

Объёмное представление свойства

Объёмное представление свойства

Материалы с высоким удельным сопротивлением

Порой требуется специально удельное сопротивление повысить. Подобная ситуация встречается в случаях с нагревательными приборами и резисторами электронных схем. Вот тогда приходит черед сплавов с высоким удельным сопротивлением (более 0,3 мкОм м). При использовании в составе измерительных приборов предъявляется требование минимального потенциала на границе стыковки с медным контактом.

Наибольшую известность получил нихром. Нередко нагревательные приборы конструируют из дешёвого фехраля (хрупкий, но дешёвый). В зависимости от назначения в сплавы входит медь, марганец и прочие металлы. Это дорогое удовольствие. К примеру, резистор из манганина стоит 30 центов на Алиэкспресс, где цены традиционно ниже магазинных. Встречается даже сплав палладия с иридием. О цене материала не следует говорить вслух.

Резисторы печатных плат часто изготавливают из чистых металлов в виде плёнок методом напыления. Массово применяются хром, тантал, вольфрам, сплавы, среди прочего, нихром.

Вещества, не проводящие электрический ток

Диэлектрики характеризуются впечатляющим удельным сопротивлением. Это не ключевая черта. К диэлектрикам относят материалы, способные перераспределять заряд под действием электрического поля. В результате происходит накопление, что используется в конденсаторах. Степень перераспределения заряда характеризуется диэлектрической проницаемостью. Параметр показывает, во сколько раз возрастает ёмкость конденсатора, где вместо воздуха использован конкретный материал. Отдельные диэлектрики способны проводить и излучать колебания под действием переменного тока. Известно сегнетоэлектричество, обусловленное сменой температур.

В процессе смены направления поля возникают потери. Подобно тому, как магнитная напряжённость частично преобразуется в тепло при воздействии на мягкую сталь. Диэлектрические потери зависят преимущественно от частоты. При необходимости в качестве материалов используют неполярные изоляторы, молекулы которых симметричны, без ярко выраженного электрического момента. Поляризация возникает, если заряды прочно связаны с кристаллической решёткой. Типы поляризации:

  1. Электронная поляризация возникает как результат деформации внешних энергетических оболочек атомов. Обратима. Характерна для неполярных диэлектриков в любой фазе вещества. Из-за малого веса электронов возникает почти мгновенно (единицы фс).
  2. Ионная поляризация распространяется на два порядка медленнее и характерна для веществ с ионной кристаллической решёткой. Соответственно, материалы применяются на частотах до 10 ГГц и обладают большим значением диэлектрической проницаемости (у двуокиси титана – до 90).
  3. Дипольно-релаксационная поляризация намного медленнее. Время совершения составляет сотые доли секунды. Дипольно-релаксационная поляризация характерна для газов и жидкостей и зависит, соответственно, от вязкости (плотности). Прослеживается влияние температуры: эффект образует пик при некотором значении.
  4. Спонтанная поляризация наблюдается у сегнетоэлектриков.